\(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [736]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 320 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {8 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d} \]

[Out]

-2/15*(a-b)*(8*C*a^2+3*b^2*(5*A+3*C))*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1
/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d-2/15*(8*C*a^2-2*C*a*b+3*
b^2*(5*A+3*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-
sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-8/15*a*C*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/
d+2/5*C*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4178, 4167, 4090, 3917, 4089} \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{15 b^3 d}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{15 b^2 d}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d} \]

[In]

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(8*a^2*C + 3*b^2*(5*A + 3*C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/S
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(1
5*b^4*d) - (2*Sqrt[a + b]*(8*a^2*C - 2*a*b*C + 3*b^2*(5*A + 3*C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(
a - b))])/(15*b^3*d) - (8*a*C*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(15*b^2*d) + (2*C*Sec[c + d*x]*Sqrt[a + b
*Sec[c + d*x]]*Tan[c + d*x])/(5*b*d)

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4090

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[Csc[e + f*x]*((1 +
 Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 4167

Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
 + 2))), x] + Dist[1/(b*(m + 2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b*
B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 4178

Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))
^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Dis
t[1/(b*(m + 3)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2) + A*(m + 3))*Csc[e + f*x] - 2
*a*C*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {2 \int \frac {\sec (c+d x) \left (a C+\frac {1}{2} b (5 A+3 C) \sec (c+d x)-2 a C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{5 b} \\ & = -\frac {8 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {4 \int \frac {\sec (c+d x) \left (\frac {a b C}{2}+\frac {1}{4} \left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2} \\ & = -\frac {8 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d}+\frac {1}{15} \left (15 A+\left (9+\frac {8 a^2}{b^2}\right ) C\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx-\frac {\left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 b^2} \\ & = -\frac {2 (a-b) \sqrt {a+b} \left (15 A+\left (9+\frac {8 a^2}{b^2}\right ) C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}-\frac {2 \sqrt {a+b} \left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {8 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d} \\ \end{align*}

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2993\) vs. \(2(320)=640\).

Time = 23.96 (sec) , antiderivative size = 2993, normalized size of antiderivative = 9.35 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]

[Out]

(Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + C*Sec[c + d*x]^2)*((4*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sin[c + d*x])/(15
*b^3) - (16*a*C*Tan[c + d*x])/(15*b^2) + (4*C*Sec[c + d*x]*Tan[c + d*x])/(5*b)))/(d*(A + 2*C + A*Cos[2*c + 2*d
*x])*Sqrt[a + b*Sec[c + d*x]]) - (4*((-2*A)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (6*C)/(5*Sqrt[b +
a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (16*a^2*C)/(15*b^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*A
*Sqrt[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Sqrt[Sec[c + d*x]])/(15*b^3*Sqrt[b + a*Cos[c + d
*x]]) - (14*a*C*Sqrt[Sec[c + d*x]])/(15*b*Sqrt[b + a*Cos[c + d*x]]) - (2*a*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x
]])/(b*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(15*b^3*Sqrt[b + a*Cos[c + d
*x]]) - (6*a*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(5*b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Se
c[c + d*x]]*(A + C*Sec[c + d*x]^2)*(2*(a + b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*
x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a +
b)] - 2*b*(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x
])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (15*A*b^2 + 8*a^2*C +
9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*d*(A + 2*C + A*Cos[2*
c + 2*d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*((-2*a*Sqrt[Cos[(c + d*x)/2]^
2*Sec[c + d*x]]*Sin[c + d*x]*(2*(a + b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*S
qrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] -
2*b*(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a
 + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (15*A*b^2 + 8*a^2*C + 9*b^2*
C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b^3*(b + a*Cos[c + d*x])^(3/2)*
Sqrt[Sec[(c + d*x)/2]^2]) + (2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Tan[(c + d*x)/2]*(2*(a + b)*(15*A*b^2 + 8
*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))
]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[Cos[c
 + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c +
d*x)/2]], (a - b)/(a + b)] + (15*A*b^2 + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]
^2*Tan[(c + d*x)/2]))/(15*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*x)/2]^2]) - (4*Sqrt[Cos[(c + d*x)/2]^2*
Sec[c + d*x]]*(((15*A*b^2 + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^4)/2 + ((a +
 b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Ta
n[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c
+ d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] - (b*(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[(b + a*Cos[c
+ d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*((Cos[c + d*x]*Sin[
c + d*x])/(1 + Cos[c + d*x])^2 - Sin[c + d*x]/(1 + Cos[c + d*x])))/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + ((a
 + b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticE[ArcSin[Tan[(c + d*x)/2]],
 (a - b)/(a + b)]*(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a
+ b)*(1 + Cos[c + d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - (b*(15*A*b^2 + (8*a^2 +
 2*a*b + 9*b^2)*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*
(-((a*Sin[c + d*x])/((a + b)*(1 + Cos[c + d*x]))) + ((b + a*Cos[c + d*x])*Sin[c + d*x])/((a + b)*(1 + Cos[c +
d*x])^2)))/Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] - a*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Cos[c +
d*x]*Sec[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] - (15*A*b^2 + 8*a^2*C + 9*b^2*C)*(b + a*Cos[c + d*x])*Se
c[(c + d*x)/2]^2*Sin[c + d*x]*Tan[(c + d*x)/2] + (15*A*b^2 + 8*a^2*C + 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*
x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]^2 - (b*(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[Cos[c + d*x]/(1 + C
os[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2)/(Sqrt[1 - Tan[(c + d
*x)/2]^2]*Sqrt[1 - ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)]) + ((a + b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c
 + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Sec[(c + d*x)/2]^2*Sqrt[1
- ((a - b)*Tan[(c + d*x)/2]^2)/(a + b)])/Sqrt[1 - Tan[(c + d*x)/2]^2]))/(15*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[
Sec[(c + d*x)/2]^2]) - (2*(2*(a + b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt
[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b
*(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a +
b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (15*A*b^2 + 8*a^2*C + 9*b^2*C)*
Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])*(-(Cos[(c + d*x)/2]*Sec[c + d*x]*Sin[(c
 + d*x)/2]) + Cos[(c + d*x)/2]^2*Sec[c + d*x]*Tan[c + d*x]))/(15*b^3*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[(c + d*
x)/2]^2]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]])))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2799\) vs. \(2(290)=580\).

Time = 19.45 (sec) , antiderivative size = 2800, normalized size of antiderivative = 8.75

method result size
parts \(\text {Expression too large to display}\) \(2800\)
default \(\text {Expression too large to display}\) \(2827\)

[In]

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*A/d/b*((cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c
)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(
cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)^2-EllipticF(cot(d*x+c)-
csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*b*cos(d*x+c)^2+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipti
cE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*cos(d*x+c)+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b*cos(d*x+c)-2*EllipticF
(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d
*x+c)+1))^(1/2)*b*cos(d*x+c)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)
*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b-(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b+
cos(d*x+c)*sin(d*x+c)*a+b*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)+2/15*C/d/b^3*(a+b
*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)+1)*(-a*b^2*tan(d*x+c)+9*sin(d*x+c)*cos(d*x+c)*a*b^2+16*Ellipti
cE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)+9*sin(d*x+c)*b^3-a*b^2*sin(d*x+c)+3*b^3*tan(d*x+c)-4*a^2*b*cos(d*x+c)*sin(d
*x+c)-9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)
-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3+8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)
)^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b^3+18*Elliptic
E(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)-16*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*
x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)-4*EllipticF(cot(d*x+c)-csc(d*x+
c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^
2*cos(d*x+c)+8*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2+9*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/
2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2-8*Ell
ipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*a^2*b*cos(d*x+c)^2-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2*cos(d*x+c)^2+8*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/
2))*a^2*b+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*
x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+8*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+
a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)^2+9*EllipticE(cot(d*x+c)-
csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*b^3*cos(d*x+c)^2-9*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x
+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)^2-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(
1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*(1/(a+b)*(
b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)
/(a+b))^(1/2))*a*b^2+16*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*
x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*cos(d*x+c)+18*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b
))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)-18*
EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*b^3*cos(d*x+c)+8*a^3*cos(d*x+c)*sin(d*x+c)+4*a^2*b*sin(d*x+c)+3*b^3*sec(d*x+c)*tan(d*
x+c))

Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^4 + A*sec(d*x + c)^2)/sqrt(b*sec(d*x + c) + a), x)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)

Maxima [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

[In]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)), x)